

VIPR Gas Path Diagnostic Results

Donald L. Simon
John D. Lekki
Gary W. Hunter
NASA Glenn Research Center

Aidan Rinehart Vantage Partners, LLC.

4th NASA Glenn Propulsion Control and Diagnostics Research Workshop December 11-12, 2013 Cleveland, OH

NASA

Outline

- Model-Based Gas Path Diagnostic Architecture Overview
- Application Example: VIPR Engine Test Data
 - VIPR Engine Health Management (EHM) Test Architecture
 - Model Enhancements
 - Diagnostic results
- Summary

Model-Based Gas Path Diagnostic Architecture

- Designed for processing real-time continuous (streaming) engine measurement data to provide:
 - o Estimation and trending of deterioration-induced engine performance changes
 - Detection and isolation of gas path system faults

Real-Time Adaptive Performance Model (RTAPM)

- Self-tuning piecewise linear Kalman filter design
- Applies NASA-developed optimal tuner selection methodology
 - Applicable for underdetermined estimation problems
 - Minimizes mean squared estimation error in parameters of interest
- Provides real-time estimates of unmeasured engine performance parameters
 - Applicable for performance trend monitoring and model-based control applications

Performance Baseline Model (PBM)

- Piecewise linear state space model design, run "pseudo open-loop" with inputs of:
 - Actuator commands, u.
 - Sensed fan speed, N1, which is used for setting model fan speed state variable to improve model-to-engine tracking capability.
 - Periodic model tuning parameter updates from RTAPM to account for gradual performance degradation effects.
- Provides a baseline of recent past engine performance

NASA

Fault Diagnostics

- Monitors residuals between sensed engine outputs and PBM estimated outputs.
- Fault detection is performed by calculating and monitoring a weighted sum of squared residuals (WSSR) signal.
- Upon fault detection, fault classification is performed by identifying the candidate fault signature that most closely matches the observed residuals in a weighted least squares sense.

VIPR Engine Test

- VIPR is a series of engine tests ongoing at NASA Dryden / Edwards Air Force Base
- Test vehicle:
 - Boeing C-17 Globemaster III
 - Equipped with Pratt & Whitney F117 highbypass turbofan engines
- VIPR 1 EHM ground tests include:
 - A series of nominal and faulted engine test cases
 - Data collected over a range of engine power settings including quasi-steady-state and transient operating conditions

Boeing C-17 Globemaster III

Pratt & Whitney F117 Turbofan Engine

VIPR Architecture for EHM Testing

Model-Based Gas Path Diagnostic Architecture Enhancements

- Model-based gas path diagnostic architecture designed based on NASA C-MAPSS40k model.
- Model updates were necessary due to notable mismatch between F117 engine and C-MAPSS40k model:
 - Re-trimmed piecewise linear model to match F117 engine performance
 - Updated model thermocouple dynamics

Original model and polynomial curve fit through acquired steady-state data (parameter y_a)

Original and re-trimmed PWLM (parameter y_a)

Diagnostic Results (Baseline Run #1)

Diagnostic Results (Baseline Run #2)

Station 2.5 Bleed Valve Fault Case

14th Stage Bleed Valve Fault Case

Summary

- Model-Based Gas Path Diagnostic Architecture successfully applied for processing streaming (continuous) aircraft engine measurement data
- Model enhancements to address engine-model mismatch were necessary
 - Re-trimming of steady-state trim points
 - Updating thermocouple dynamics
- Future work to focus on
 - Improving model-to-engine matching during transients
 - Evaluating architecture's ability to estimate and trend engine performance deterioration

References

Optimal Tuner Selection

- Simon, D.L., Garg, S., (2010), "Optimal Tuner Selection for Kalman Filter-Based Aircraft Engine Performance Estimation," Journal of Engineering for Gas Turbines and Power, Vol. 132 / 0231601-1.
- Simon, D. L., Armstrong, J. B., Garg, S., (2011), "Application of an Optimal Tuner Selection Approach for On-Board Self-Tuning Engine Models," ASME-GT2011-46408, 2011 ASME Turbo Expo, Vancouver, BC, Canada, June 6-10.

Piecewise Linear Model Implementation

Armstrong, J.B., Simon, D.L., (2012), "Constructing an Efficient Self-Tuning Aircraft Engine Model for Control and Health Management Applications," Annual Conference of the Prognostics and Health Management Society, Minneapolis, MN, Sep. 23-27.

Model-Based Diagnostic Architecture

- Simon, D. L., (2010), "An Integrated Architecture for Onboard Aircraft Engine Performance Trend Monitoring and Gas Path Fault Diagnostics," Proceedings of The 2010 JANNAF Joint Subcomittee Meeting, Colorado Springs, CO, May 3-7.
- Armstrong, J.B., Simon, D.L., (2011), "Implementation of an Integrated On-Board Aircraft Engine Diagnostic Architecture," AIAA-2011-5859, 47th AIAA Joint Propulsion Conference & Exhibit, San Diego, CA, July 31-August 3.
- Simon, D.L., (2012), "An Integrated Approach for Aircraft Engine Performance Estimation and Fault Diagnostics," ASME-GT2012-69905, 2012 ASME Turbo Expo, Copenhagen, Denmark, June 11-15.

Backup Slides

Piecewise Linear Model (PWLM) Generation

1) Nonlinear Engine Model

- Physics-based aerothermodynamic model
- Full-envelope transient simulation capabilities

Linearization

2) Linear Point Model Generation

- Linear state space model design
- Approximates nonlinear model dynamics near design point
- Generated at multiple design points spanning engine operating envelope

$$\dot{x} = A\underbrace{(x - x_{trim})}_{\Delta x} + B\underbrace{(u - u_{trim})}_{\Delta u} + L\underbrace{(h - h_{ref})}_{\Delta h}$$

$$\dot{x} = A\Delta x + B\Delta u + L\Delta h$$

$$\underbrace{y - y_{trim}}_{\Delta y} = C\underbrace{(x - x_{trim})}_{\Delta x} + D\underbrace{(u - u_{trim})}_{\Delta u} + M\underbrace{(h - h_{ref})}_{\Delta h}$$

$$\Delta y = C\Delta x + D\Delta u + M\Delta h$$

3) Piecewise Linear Model

- Comprising multiple linear point models
- Interpolation applied to enable transition between point models
- Approximates nonlinear model dynamics over entire operating envelope.